Part Number Hot Search : 
BAT46J 20020 DP40D6S MC332 APT30 LT1058CN LM350BT SRF20200
Product Description
Full Text Search
 

To Download RFP45N03L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Semiconductor
RFP45N03L, RF1S45N03L, RF1S45N03LSM
45A, 30V, 0.022 Ohm, Logic Level, N-Channel Power MOSFETs
Description
These are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits. Formerly developmental type TA49030.
September 1998
Features
* 45A, 30V
[ /Title (RFP45 N03L, RF1S45 N03L, RF1S45 N03LS M) /Subject 45A, 0V, .022 hm,
* rDS(ON) = 0.022 * Temperature Compensating PSPICE Model * Can be Driven Directly from CMOS, NMOS, and TTL Circuits * Peak Current vs Pulse Width Curve * UIS Rating Curve * 175oC Operating Temperature * Related Literature - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"
Symbol
D
Ordering Information
PART NUMBER RFP45N03L RF1S45N03L RF1S45N03LSM PACKAGE TO-220AB TO-262AA TO-263AB BRAND FP45N03L F45N03L F45N03L
S G
NOTE: When ordering, use the entire part number. Add the suffix 9A, to obtain the TO-263AB variant in tape and reel, e.g., RF1S45N03LSM9A.
Packaging
JEDEC TO-220AB
SOURCE DRAIN GATE DRAIN (FLANGE) DRAIN (FLANGE)
JEDEC TO-262AA
SOURCE DRAIN GATE
JEDEC TO-263AB
DRAIN (FLANGE) GATE SOURCE
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright
(c) Harris Corporation 1998
File Number
4005.2
7-1
RFP45N03L, RF1S45N03L, RF1S45N03LSM
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified RFP45N03L, RF1S45N03L, RF1S45N03LSM 30 30 10 45 Refer to Peak Current Curve Refer to UIS Curve 90 0.606 -55 to 175 300 260 UNITS V V V A
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage RGS = 20k (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD Derate Above 25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
W W/oC oC
oC oC
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. TJ = 25oC to 150oC.
Electrical Specifications
PARAMETER
TC = 25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS TEST CONDITIONS ID = 250A, VGS = 0V VGS = VDS, ID = 250A VDS = Rated BVDSS, VGS = 0V VDS = Rated BVDSS, VGS = 0V, TC = 150oC VGS = 10V ID = 45A, VGS = 5V (Figure 11 VDD = 15V, ID = 45A, RL = 0.33, VGS = 5V, RGS = 5 (Figures 15, 18, 19) MIN 30 1 VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 24V, ID = 45A, RL = 0.533 IG(REF) = 0.6mA (Figures 20, 21) TYP 15 160 20 20 50 30 1.5 1650 575 200 MAX 2 25 250 100 0.022 260 60 60 36 1.8 1.65 80 UNITS V V A A nA ns ns ns ns ns ns nC nC nC pF pF pF
oC/W oC/W
Drain to Source Breakdown Voltage Gate to Threshold Voltage Zero Gate Voltage Drain Current
Gate to Source Leakage Current Drain to Source On Resistance (Note 2) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 5V Threshold Gate Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Thermal Resistance Junction-to-Case Thermal Resistance Junction-to-Ambient
IGSS rDS(ON) tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(5) Qg(TH) CISS COSS CRSS RJC RJA
VDS = 25V, VGS = 0V, f = 1MHz (Figure 14)
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage Diode Reverse Recovery Time NOTES: 2. Pulse test: pulse width 300s, duty cycle 2%. 3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3). SYMBOL VSD trr ISD = 45A ISD = 45A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.5 125 UNITS V ns
7-2
RFP45N03L, RF1S45N03L, RF1S45N03LSM Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 TC , CASE TEMPERATURE (oC) 150 175 ID, DRAIN CURRENT (A)
Unless Otherwise Specified
50
40
30
20
10
0 25 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 1 THERMAL IMPEDANCE ZJC, NORMALIZED 0.5 0.2 0.1 0.1 0.05 0.02 0.01 SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 100 101 PDM
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
IDM, PEAK CURRENT CAPABILITY (A)
TC = 25oC, TJ = MAX RATED
500 VGS = 10V VGS = 5V 100 FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I
ID, DRAIN CURRENT (A)
100 100s
= I25
175 - TC 150
1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100ms DC
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION TC = 25oC 10 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101
50
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
FIGURE 5. PEAK CURRENT CAPABILITY
7-3
RFP45N03L, RF1S45N03L, RF1S45N03LSM Typical Performance Curves
200 IAS, AVALANCHE CURRENT (A) 100 ID, DRAIN CURRENT (A) STARTING TJ = 25oC 75 VGS = 4.5V
Unless Otherwise Specified (Continued)
100 VGS = 10V VGS = 5V
10
STARTING TJ = 150oC
50
VGS = 4V
If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS-VDD) +1] 1 0.001 0.01 0.1 1 tAV , TIME IN AVALANCHE (ms) 10 100
25
VGS = 3.5V VGS = 3V
0
PULSE DURATION = 250s, TC = 25oC 0 4 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) 5
NOTE: Refer to Harris Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING FIGURE 7. SATURATION CHARACTERISTICS
IDS(ON), DRAIN TO SOURCE CURRENT (A)
100 VDD = 15V
175oC
rDS(ON), ON-STATE RESISTANCE (m)
-55oC
100
75 25oC 50
75 ID = 15A 50 ID = 30A ID = 45A
ID = 2A 25
25 PULSE TEST PULSE DURATION = 250s DUTY CYCLE = 0.5% MAX 0 0 1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V) 7.5
PULSE DURATION = 250s 0 2.5 3.0 3.5 4.0 4.5 5.0 VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 8. TRANSFER CHARACTERISTICS
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT
350 VDD = 15V, ID = 45A, RL = 0.333 300 tr SWITCHING TIME (ns) 250 200 150 tf 100 td(OFF) 50 td(ON) 0 0 30 20 40 10 RGS, GATE TO SOURCE RESISTANCE () 50 NORMALIZED ON RESISTANCE
2.0 PULSE DURATION = 250s, VGS = 5V, ID = 45A
1.5
1.0
0.5
0 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 200
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE
FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
7-4
RFP45N03L, RF1S45N03L, RF1S45N03LSM Typical Performance Curves
2.0 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250A NORMALIZED GATE THRESHOLD VOLTAGE 1.5
Unless Otherwise Specified (Continued)
2.0 ID = 250A
1.5
1.0
1.0
0.5
0.5
0 -80
-40
0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
200
0 -80
-40
0
40
80
120
160
200
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
VDS , DRAIN TO SOURCE VOLTAGE (V)
2000 C, CAPACITANCE (pF) CISS 1500
VGS = 0V, f = 0.1MHz CISS = CGS + CGD CRSS = CGD COSS CDS + CGD
VDD = BVDSS 24
VDD = BVDSS 4
18 0.75 BVDSS 12 0.50 BVDSS 0.25 BVDSS RL = 0.67 IG(REF) = 0.6mA VGS = 5V I G ( REF ) I G ( REF )
3
1000 COSS 500 CRSS
2
6
1
0
0
0 0 5 10 15 20 VDS, DRAIN TO SOURCE VOLTAGE (V) 25
20 --------------------I G ( AC T )
t, TIME (s)
80 --------------------I G ( AC T )
NOTE: Refer to Harris Application Notes AN7254 and AN7260. FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT
7-5
VGS , GATE TO SOURCE VOLTAGE (V)
2500
30
5
RFP45N03L, RF1S45N03L, RF1S45N03LSM Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
tON VDS VDS VGS RL
+
tOFF td(OFF) tr tf 90%
td(ON)
90%
DUT RGS VGS
-
VDD
0
10% 90%
10%
VGS 0 10%
50% PULSE WIDTH
50%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
VDS RL VDD VDS VGS = 10V VGS
+
Qg(TOT)
Qg(5) VDD VGS VGS = 1V 0 Qg(TH) IG(REF) 0 VGS = 5V
DUT IG(REF)
FIGURE 20. GATE CHARGE TEST CIRCUIT
FIGURE 21. GATE CHARGE WAVEFORMS
7-6
RFP45N03L, RF1S45N03L, RF1S45N03LSM PSPICE Electrical Model
.SUBCKT RFP45N03L 2 1 3 ;
CA 12 8 2.55e-9 CB 15 14 2.64e-9 CIN 6 8 1.45e-9 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD EBREAK 11 7 17 18 33.3 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 4.9e-9 LSOURCE 3 7 4.9e-9 MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 0.14e-3 RGATE 9 20 0.89 RIN 6 8 1e9 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 10.31e-3 RVTO 18 19 RVTOMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
12 S1B CA EGS GATE 1 9
rev 11/22/94
DPLCAP 10 RSCL2
5
DRAIN 2 LDRAIN RSCL1 + 51 DBREAK 11 EBREAK + 17 18
ESG + 6 8 VTO + 16
5 51
ESCL 50 RDRAIN
DBODY
-
EVTO 20 + 18 8 LGATE RGATE 6
21 MOS1
MOS2
RIN
CIN 8 RSOURCE LSOURCE 7 3 SOURCE
S1A 13 8 14 13
S2A 15 S2B 13 + 6 8 EDS CB + 5 8 14 IT RBREAK 17 18 RVTO 19 VBAT +
-
-
VBAT 8 19 DC 1 VTO 21 6 0.583 ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/176,6))} .MODEL DBDMOD D (IS = 3.61e-13 RS = 5.06e-3 TRS1 = 3.05e-3 TRS2 = 7.57e-6 CJO = 2.16e-9 TT = 2.18e-8) .MODEL DBKMOD D (RS = 1.66e-1 TRS1 = -2.97e-3 TRS2 = 7.57e-6) .MODEL DPLCAPMOD D (CJO = 0.96e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 2.313 KP = 53.82 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 8.95e-4 TC2 = -1e-7) .MODEL RDSMOD RES (TC1 = 3.82e-3 TC2 = 1.17e-5) .MODEL RSCLMOD RES (TC1 = 2.03e-3 TC2 = 0.45e-5) .MODEL RVTOMOD RES (TC1 = -2.27e-3 TC2 = -5.75e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.82 VOFF= -2.82) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.82 VOFF= -4.82) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.67 VOFF= 2.33) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.33 VOFF= -2.67) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley.
7-7


▲Up To Search▲   

 
Price & Availability of RFP45N03L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X